9 research outputs found

    Dynamic Hardware Resource Management for Efficient Throughput Processing.

    Full text link
    High performance computing is evolving at a rapid pace, with throughput oriented processors such as graphics processing units (GPUs), substituting for traditional processors as the computational workhorse. Their adoption has seen a tremendous increase as they provide high peak performance and energy efficiency while maintaining a friendly programming interface. Furthermore, many existing desktop, laptop, tablet, and smartphone systems support accelerating non-graphics, data parallel workloads on their GPUs. However, the multitude of systems that use GPUs as an accelerator run different genres of data parallel applications, which have significantly contrasting runtime characteristics. GPUs use thousands of identical threads to efficiently exploit the on-chip hardware resources. Therefore, if one thread uses a resource (compute, bandwidth, data cache) more heavily, there will be significant contention for that resource. This contention will eventually saturate the performance of the GPU due to contention for the bottleneck resource,leaving other resources underutilized at the same time. Traditional policies of managing the massive hardware resources work adequately, on well designed traditional scientific style applications. However, these static policies, which are oblivious to the application’s resource requirement, are not efficient for the large spectrum of data parallel workloads with varying resource requirements. Therefore, several standard hardware policies such as using maximum concurrency, fixed operational frequency and round-robin style scheduling are not efficient for modern GPU applications. This thesis defines dynamic hardware resource management mechanisms which improve the efficiency of the GPU by regulating the hardware resources at runtime. The first step in successfully achieving this goal is to make the hardware aware of the application’s characteristics at runtime through novel counters and indicators. After this detection, dynamic hardware modulation provides opportunities for increased performance, improved energy consumption, or both, leading to efficient execution. The key mechanisms for modulating the hardware at runtime are dynamic frequency regulation, managing the amount of concurrency, managing the order of execution among different threads and increasing cache utilization. The resultant increased efficiency will lead to improved energy consumption of the systems that utilize GPUs while maintaining or improving their performance.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113356/1/asethia_1.pd

    Mascar: Speeding up GPU Warps by Reducing Memory Pitstops

    Get PDF
    Abstract-With the prevalence of GPUs as throughput engines for data parallel workloads, the landscape of GPU computing is changing significantly. Non-graphics workloads with high memory intensity and irregular access patterns are frequently targeted for acceleration on GPUs. While GPUs provide large numbers of compute resources, the resources needed for memory intensive workloads are more scarce. Therefore, managing access to these limited memory resources is a challenge for GPUs. We propose a novel Memory Aware Scheduling and Cache Access Re-execution (Mascar) system on GPUs tailored for better performance for memory intensive workloads. This scheme detects memory saturation and prioritizes memory requests among warps to enable better overlapping of compute and memory accesses. Furthermore, it enables limited re-execution of memory instructions to eliminate structural hazards in the memory subsystem and take advantage of cache locality in cases where requests cannot be sent to the memory due to memory saturation. Our results show that Mascar provides a 34% speedup over the baseline roundrobin scheduler and 10% speedup over the state of the art warp schedulers for memory intensive workloads. Mascar also achieves an average of 12% savings in energy for such workloads
    corecore